If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10=16t^2+64t+18
We move all terms to the left:
10-(16t^2+64t+18)=0
We get rid of parentheses
-16t^2-64t-18+10=0
We add all the numbers together, and all the variables
-16t^2-64t-8=0
a = -16; b = -64; c = -8;
Δ = b2-4ac
Δ = -642-4·(-16)·(-8)
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-16\sqrt{14}}{2*-16}=\frac{64-16\sqrt{14}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+16\sqrt{14}}{2*-16}=\frac{64+16\sqrt{14}}{-32} $
| 3x+5(-2x-4)=-21-6x | | 9x-4(3x)+1+33=0 | | 6x+11=2x–1 | | 8b-6-2b+4=16 | | (65/100)=(x/6) | | -(3x-1)=13 | | 65/100=x/6 | | 3x/4+x/3=7/12 | | 3a+7+2a=42 | | 2+4+4×15=a | | 4^7x-8=8^5x-7 | | -13x-25=10-6x | | h/6=9-4h/3 | | x+2x+3x+4x+5x+6x+7x+8x+9x=10 | | -3d+8=2 | | (14x-13)=(8x+5) | | 2c-7c=31 | | 2x+3-x/3=x+7 | | 66=66/x | | A=5x+20 | | ∠A=5x+20 | | ∠A=5x+20∘ | | 24/x=12-8. | | 7+3x=2x+8 | | 2(3p+2)=9 | | 8x=72-16 | | 9j-7=-9j | | z^2+2-56=0 | | -3(7p+2)-2(5-14p)-3(3+2p)=0 | | 8y-2=4 | | 12x=24+24 | | X/3=x/5+5/3 |